
Architectural solutions for enhancing the real-time behavior of distributed
embedded systems

Carlos E. Pereira
Federal University of Rio Grande do Sul (UFRGS)

Electrical Engineering Department
cpereira@eletro.ufrgs.br

Marcelo Götz
University of Paderborn
Heinz Nixdorf Institut

mgoetz@uni-paderborn.de

Abstract

The paper presents a low cost embedded hardware and
software architecture that makes use of COTS components
to support distributed real-time embedded systems. The
proposed architecture addresses a common problem in con-
ventional architectures: undesirable timing variations in
application’s temporal behavior due to overload caused by
operating system activities when dealing with concurrent
and time-triggered processes. The proposed architecture
makes use of a 32bits high performance microcontroller and
the open source code operating system for embedded appli-
cations uClinux and it enhances these with extensions to
better cope with distributed real-time systems development.

1. Introduction

The correctness of a real-time system depends not only
on the logical results of computation, but also on the timeli-
ness of the sampled inputs and produced results [10], there-
fore adding complexity to its development. Due to advances
in areas such as microcontrollers and software, distributed
real-time embedded systems have become very attractive
and are widely used in several application domains, such
as industrial automation, telecommunication and personal
communication (cellular phones, PDAs), process control
and home appliances. There is a clear trend in moving the
development from a centralized architecture, consisting of
few nodes which concentrate all decision making and con-
trol processes, to network centric embedded systems, that
means, embedded systems that have to present the ability of
coordinate their activities with other systems by means of
communication and synchronization.

Real-time operating systems (RTOS) are a key compo-
nent of real-time distributed embedded systems. By han-
dling aspects such as task scheduling, asynchronous event

handling, I/O interfacing, the existence of RTOS consider-
ably eases the task of programming concurrent applications,
since programmer does not have to explicitly take into ac-
count concurrent processing in their programs. However,
since RTOS activities usually compete for the same CPUs
with other application tasks, they can (and usually do) in-
fluence the overall system’s performance, leading to a non
deterministic temporal behavior.

This article presents a hardware and software archi-
tecture for real-time distributed embedded systems, which
aims to overcome the problems mentioned above. At hard-
ware level it mainly attacks the problem of temporal de-
terminism through the use of dedicated hardware artifacts
using COTS components. At software level, open source
and widely adopted operating system for embedded sys-
tems, uClinux [2], is adopted and some real-time extensions
are proposed. The RTOS scheduling software is partitioned
and allocated to a special processor, in order to minimize
the overhead caused by execution of RTOS administrative
and to achieve a deterministic temporal behavior. This pa-
per is divided as follows: section 2 discusses some related
work previously described in the literature. In section 3,
the proposed architecture is depicted and its mains com-
ponents and functionality are presented in section 4. Sec-
tion 5 presents preliminary results and performance mea-
surements. Finally, section 6 draws some conclusions and
signals directions of future research

2. Related Works

Architectural concepts for supporting the goal of achiev-
ing a deterministic temporal behavior are described in the
literature in ([9, 6, 11]). All have in common the con-
clusion that a deterministic temporal behavior can only be
supported by providing new architectural concepts, since
conventional hardware and software architectures are inher-
ently non deterministic with regard to their temporal behav-
ior. In the following sub-sections a brief discussion on the

Proceedings of The Eighth IEEE International Workshop on Object-Oriented Real-Time  
Dependable Systems ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE 

Authorized licensed use limited to: University of Florida. Downloaded on March 24, 2009 at 16:11 from IEEE Xplore.  Restrictions apply.



most relevant related work is presented

2.1. Multi-processor Architecture for Embedded
Real-time Systems

In a previous work developed at UFRGS by one of the
authors and described in [9], a low cost multi-processor ar-
chitecture based on 8 bits microcontrollers was introduced.
Its goal was to provide a processing unit to be used in dis-
tributed real-time systems with high level of temporal de-
terminism.

The proposed architecture incorporates three microcon-
trollers with distinct responsibilities:

� the Main Processor is responsible for the management
of all time-based activities, such as time-activated dis-
patch of concurrent processes and timer management.
It is also responsible for the handling interrupts and
asynchronous signals as well as for the scheduling of
concurrent processes;

� the Communication Processor deals with all message-
based communication processes, coordination and
synchronization among tasks. It includes all commu-
nication network related activities, such as sending and
receiving messages, addressing, routing, etc.

� the Execution Processor is responsible for running ap-
plications tasks.

The proposed architecture has been successfully applied
to some industrial applications in the shoe industry and pre-
sented a deterministic temporal behavior. One of the major
drawbacks of this work was that it was based on a rudimen-
tal embedded operating system developed by the authors,
which only included the basic functionalities of task man-
agement and communication. The main focus of that work
was on an evaluation of the enhancements obtained from
the proposed hardware architecture.

2.2. Spring Architecture for Real-Time Systems

The Spring architecture presented in [8] is a set of hard-
ware and software, highly integrated, to build complex real-
time systems. One of its more important features is the
functional distribution of the system, on that the predictabil-
ity is enhanced due to isolation of application from the ex-
ternal interrupts. This is reached using distinct processors
for the application and for the rest of the system. It was also
designed to be used in distributed systems.

The proposed architecture was aimed for high-end appli-
cations and suggested the use of optic communication chan-
nels and a VLSI device to perform the scheduling activities.
The major drawback of the Spring architecture is that most
of its tools and APIs were proprietary what negatively im-
pacts portability and programming aspects.

2.3. Architectural Support for Predictability in
Hard Real Time Systems

The work by Halang and Colnaric, which is described
in [6], is a multi-processor architecture consisting of one
or more general-purpose microprocessors and one co-
processor for running operating system tasks. The main
goal of the approach was to enhance system’s predictabil-
ity and improve system’s performance by minimizing the
number of interrupts to operating systems task execution.
A programming language was specifically developed for the
target hardware.

3. Proposed Architecture

The architecture to be proposed in this paper combines
the advantages of an open source and stable operating sys-
tem and a multi-processor microcontroller-based hardware
platform. By combining public available, open source op-
erating system code and low cost microcontrollers, a cost-
effective solution can be obtained. The proposed architec-
ture represents an extension of the work presented in [9],
aiming a better support in software by adopting COTS and
widely used Linux software. Similar to the work in [9],
three distinct functional modules are identified - application
tasks execution, task management, and communication - but
differently those are not mapped to three individual micro-
controllers. In the current approach only two processors are
necessary, one of them containing a hardware-based com-
munication support.

The Application processor has a similar functionality to
the Execution block presented in [9], and the main activities
are: (i) Execution of application tasks; (ii) management of
memory associated with each task; (iii) task context switch;
(iv) communication with Secondary Block. The Manager
processor handles file-system, I/O, and timing management
(asynchronous signals), as well as scheduling algorithms
execution, monitoring of execution time and blocking time
(information used by some scheduling algorithms).

To ensure a deterministic temporal behaviour of the
uClinux operating system, it is suggested to split its func-
tionality into the two processors. Functions that are fre-
quently used by application programs and do not tend to
cause non-deterministic behaviour are co-located in the ap-
plication processor with application tasks. Management and
communication functions, on the other hand, should run in
the manager processor. After a carefully study on operating
system internals, such as memory location and variables,
the proposed separation of the operating system is the phys-
ical division between the user-level and kernel-level in the
Main Block and Secondary Block. The logical connection
between them is provided by a communication channel.

2

Proceedings of The Eighth IEEE International Workshop on Object-Oriented Real-Time  
Dependable Systems ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE 

Authorized licensed use limited to: University of Florida. Downloaded on March 24, 2009 at 16:11 from IEEE Xplore.  Restrictions apply.



Figure 1. Block diagram from proposed hard-
ware architecture.

4. Implementation (Hardware and Software)

4.1. Hardware

The microcontrollers MC68332 and MC68376 from
Motorola were selected to implement the application and
manager processor respectively, due to the following rea-
sons:

� Both have powerful programming environments and
runtime available in the internet, with free license of
use (GPL);

� There are uClinux ports for both microcontrollers,
whose source code is also open;

� They are low cost, since it is for general purpose use
(COTS components);

� There are versions of the selected microcontrollers
which include embedded hardware support for com-
munication protocols such as CAN;

� They have a 32bits architecture;

Figure 1 shows a block diagram of the implemented hard-
ware architecture.

The hardware includes both FLASH and RAM memory.
The first holds the binary executable code, and the second
one stores variables, stack, data structures and the tasks con-
texts. Based on the results obtained in [5], following mem-
ory size was selected: (i) for the main block: 2Mbytes of
RAM and 2Mbytes of FLASH, (ii) for the Secondary Block:
1 Mbytes of RAM and 1Mbytes of FLASH. Both processors
can exchange data through a dual-port memory.

For the developed prototype, a microcontroller with a
embedded CAN communication module was chosen. The

Figure 2. Conceptual architecture for uClinux

CAN protocol was selected due to its timing characteris-
tics and the possibility of implementing real-time publisher-
subscriber concepts [7] on top of it.

4.2. Software

Version 2.0.38 of uClinux was selected in the described
implementation due to two main reasons: it was a stable
version at the time of the implementation and it included
a port for a MC68332 microcontroller successfully used in
[5]. The complete operating system code was available on
the Internet. The uClinux provides a logical separation be-
tween the user level and kernel level using system calls.
This leaded to a natural partition of operating system func-
tionality into two blocks, one dealing with kernel related
tasks and another one handling application related tasks.
Figure 2 depicts the the operating system parts that must
be modified.

While the proposed partition should decrease the over-
head imposed by operating system management activities
on the temporal behavior of application tasks, in order to
obtain a fully deterministic temporal behavior, additional
real-time extensions to uClinux were proposed: a schedul-
ing strategy similar to the one proposed in RED-Linux [12].
The main advantage of the proposed architecture including
two processors is that one of the main overheads imposed
by RED-Linux, mainly the insertion of interruptible points
is avoided, since such code blocks run on the manager pro-
cessor and therefore do not interfere with the application
tasks. RED-Linux was selected after an evaluation among
others extensions to Linux [13, 1].

5. Preliminary Results

The hardware and software development occurred si-
multaneously. Therefore, in order to allow the testing
of software modules a MEGA332 board, composed by a
MC68332 CPU (described in [5]), was used to execute the
Primary Block. The Secondary Block was executed using

3

Proceedings of The Eighth IEEE International Workshop on Object-Oriented Real-Time  
Dependable Systems ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE 

Authorized licensed use limited to: University of Florida. Downloaded on March 24, 2009 at 16:11 from IEEE Xplore.  Restrictions apply.



Case A Case B
Period of T1 ��� ���

Jitter of T1 ����� - ����� ����� - �����
Period of T2 ��� ���

Jitter of T2 ����� - ����� ����� - �����

Table 1. Measurements of periods and jitters

an emulation software running on a PC machine. This soft-
ware (called xcopilot) makes the emulation of a board com-
posed by a MC68328 CPU used in the PalmPilot product.
As it is open source code, it was possible to implement the
Secondary Block on it. The communication channel be-
tween the blocks was implemented using the USART in
MEGA332 and the USART of PC (mapped by xcopilot).

Timing measurements were done using available output
pins of the MEGA332 board (application tasks sent a sig-
nal to the output which was captured with a digital oscil-
loscope). The runtime environment using during the test
included two real-time tasks, which were statically created
and were ready to start just after system boot. Both tasks
were cyclic with a period of 2 and 4 ms respectively.

The Linux scheduler was modified in such a way that
real-time tasks had a higher execution priority than non real-
time ones ( it would run other non real time tasks, only when
real-time tasks have finished their execution within a cy-
cle). A Rate Monotonic Algorithm (RMA) was adopted as
scheduling strategy. Table 1 shows the time measurements
(jitter and cycles) obtained in two different configurations:
in Case A only the two real-time tasks are active (addi-
tional to the usual operating system management tasks) and
in Case B an overhead was created by starting several non
real-time tasks. The measurements were obtained with the
MEGA332 running at 16MHz and 38400bps speed of US-
ART channel (maximum possible frequency for xcopilot).

The results shows that even with a considerable increase
of non critical tasks, the jitter of the real-time tasks were ap-
proximately the same. The maximum jitter obtained in the
experiments (14%) can be considered good as preliminary
result when compared with RTLinux port for the uClinux
(referenced in[2]). Additional time measurements per-
formed were related to the OS management tasks running
in the Secondary Block. The time interval from the receipt
of a scheduler message requesting a context switch until the
execution start of the OS function responsible for search-
ing the RT-task to be activated (Search_for_RT_task)
was measured (row labeled as latency in Table 2) as well
as the total task context switching. Both measurements are
presented in Table 2 for the same scenarios depicted previ-
ously (Case A and Case B). Table 2 also presents the exe-
cution time for searching the real-time task to be activated.

min max
Latency �� ��� ��� ���

Search_for_RT_task ��� ��� ��� ���

Context switch 	��� 	���

Table 2. Measurements of periods and jitters

6. Conclusions

The work described here is an alternative hard-
ware/software platform which aims to ensure the temporal
determinism in distributed embedded real-time systems.The
approach makes use of COTS software and hardware com-
ponents, such as uLinux and low cost microcontrollers.
This article also describes the necessity to have a platform
that can support more complexity tools for modeling and
design real time systems [3, 4].

The obtained results were quite encouraging, since even
in a prototype form, the proposed architecture presented a
deterministic temporal behavior for different configurations
(with regard to an increasing number of application tasks,
both real-time as non real-time). Moreover, the proposed
platform allows the use of available and well known de-
velopment tools, like the gcc compiler (with GNU General
Public License).

The experiments performed indicated that the perfor-
mance of the proposed architecture using two microcon-
trollers for running operating system tasks relies very
strongly on the communication channel between the pro-
cessors. The use of a dual-port memory presents the best
trade-off regarding access time and synchronization capa-
bilities. Therefore, the serial communication channel is not
suitable to implement the channel for the proposed architec-
ture. It limits the capacity of the system, even more when,
for instance, read/write operations on a device driver have
to send/receive data to/from user space.

In the proposed architecture the implementation of dif-
ferent and more complicated scheduler algorithms is facili-
tated, since the impact of its computation load on the appli-
cation is minimized, since it runs on a separate processor.
Additionally, the maneger processor may be used to deter-
mine the actual runtime execution and blocking times for
all tasks, providing a valuable information to be used by
scheduling algorithms.

As a next step in our research, a more complex case study
is being developed, on which a robotic system containing
two manipulators with 7 degrees of freedom each is going
to be controlled by a network of active objects running on
the architecture proposed on this paper.

4

Proceedings of The Eighth IEEE International Workshop on Object-Oriented Real-Time  
Dependable Systems ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE 

Authorized licensed use limited to: University of Florida. Downloaded on March 24, 2009 at 16:11 from IEEE Xplore.  Restrictions apply.



References

[1] Rtai - real-time application interface. URL:
http://www.rtai.org, 2001.

[2] Uclinux. the linux/microcontroller project. URL:
http://www.uClinux.org, 2001.

[3] L. B. Becker and C. E. Pereira. From design to implemen-
tation: Tool support for the development of object-oriented
distributed real-time systems. In 12th Euromicro Conference
on Real-Time Systems, Stokholm, Sweeden, June 2000.

[4] L. B. Becker, C. E. Pereira, E. Nett, and M. Gergeleit. An
integrated environment for the complete development cycle
of an object-oriented distributed real-time system. Computer
Systems Science Engineering, 1999.

[5] C. Brudna. Desenvolvimento de sistemas de automacao in-
dustrial baseado em objetos distribuidos e barramentos can.
Master’s thesis, CPGEE - UFRGS, 2000.

[6] W. A. Halang and M. Colnaric. Architectural support for
predictability in hard real time systems. Control Engineer-
ing Practice, 1, 1993.

[7] J. Kaiser and M. Mock. Implementing the real-time pub-
lisher/subscriber model on the cobntroller area network
(can). 2nd International Symposium on Object Oriented
Real-Time Distributed Computing - ISORC99, May 1999.

[8] D. Niehaus, E. M. Nahum, J. Stankovic, and K. Ramam-
ritham. Architecture and os support for predictable real-time
systems. 5ht International Conference on Architectural Sup-
port for Programming Languages and Operating Systems
(ASPLOS), 1992.

[9] C. E. Pereira and M. Pontremoli. Hardware support for dis-
tributed real-time operating systems. IFAC Control Engi-
neering Practice, 5(10):1435–1442, October 1997.

[10] J. Stankovic. Misconceptions about real-time computing:
a serious problem for next generation systems, volume 21.
October 1988.

[11] J. Stankovic, D. Niehaus, and K. Ramamritham. Springnet:
"a scalable architecture for high performance predictable,
and distributed real-time computing. Workshop on Archi-
tectural Aspects of Real-Time Systems, December 1992.

[12] Y. Wang and K. Lin. Enchancing the real-time capability
of the linux kernel. RTSS - Real-Time Systems Symposium,
1998.

[13] V. Yodaiken. The rt-linux approach to hard real-time. URL:
http://www.rtlinux.org/documents/papers/whitepaper.html,
October 1997.

5

Proceedings of The Eighth IEEE International Workshop on Object-Oriented Real-Time  
Dependable Systems ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE 

Authorized licensed use limited to: University of Florida. Downloaded on March 24, 2009 at 16:11 from IEEE Xplore.  Restrictions apply.


